If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-14t+5=0
a = 2; b = -14; c = +5;
Δ = b2-4ac
Δ = -142-4·2·5
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{39}}{2*2}=\frac{14-2\sqrt{39}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{39}}{2*2}=\frac{14+2\sqrt{39}}{4} $
| 8x+4= 6x+66x+6 | | -5+4n=-13 | | 6(x-3)/4+1=-11 | | 18d-10=6 | | (x-34)x15=0 | | 39=2(x+6)=7x | | 140+8x=-x+49 | | 5/14x1.4=-1/2 | | 1/2y-1=1/5y | | 3r-6=1+4r | | 19x+x=19x | | x+3/5=x+9/6 | | 12x-30=60+6x | | 8n-10=27-(3n-7) | | 3-4c=-21 | | 3=18-3x | | -8(3n-7)-7(6n+4)=-38 | | 2x(2x+6)-4x=20 | | −4(x−1)−2=−8(x+1)-4(x-1)-2=-8(x+1) | | 5-2c=2c+7 | | 12x-94=41+7x | | 3x+4/2+12=14+3x/2 | | -0.4x=3 | | (2/3)x-5=(6-x)/5 | | 125m-100m+33,775=35,700-150m | | x+(30/8)=(1/4)x | | 8x+12=4(x-3) | | 2(6-4x)=5x+3 | | 5(x-6)+2x=8x-(x+20) | | 6g+2(-8+4g)=1–g | | 6x-3(2x+1)=-10 | | 13+6x=8x+3 |